
June 19, 2007

New Hybrid Application Environment for Controls

Abstract
This technical note describes the idea of a new hybrid application environment for the data
acquisition and control systems at Fermilab, defines a list of specific issues the application
developers are currently facing, and set forth general requirements for the new system.

Reasons for a New Application Environment
With the introduction of two alternative control systems at ILC Test Facilities a bunch of new
technical stuff comes on the scene. The user applications, protocols, and API are not novel in
fact, but certainly different from those we have had before. Let's skip the things on the lower
level of these systems—front-end architectures and transport protocols—and look at the façade.

Each product already includes a set of specific applications, capable to perform general
functions. It's important that the users can start using the control system right away, with the
provided tools, and don't need to spend time and efforts on in-house development.

In the course of time, however, more and more custom applications will be implemented. Once
installed, open software systems start expanding—this fact is inevitable. For a working product,
there is always a need of integration with other systems, new demands from its users, and new
challenges from the outside environment (network, security) that have to be addressed. Given the
number of computer technologies around, every conceivable gadget will be ultimately written: a
web-service provider (because non-HTTP ports are blocked by the firewall), a bridge to ACNET
(however it's refused at this time), new server- and client-side applications, nightly reports,
AJAX-based displays with SVG images, and everything else not included in the initial design. It
happens naturally to fill the gap between what the core system provides, and what's really needed
and can be implemented with the means at hand.

Most of the user applications in ACNET, DOOCS, and EPICS can run, as a matter of fact, only
on designated hosts. An ordinary user can't launch them on his or her own PC, and has to utilize
a remote access tool, such as X terminal or VNC. In some cases, this mode of operation is
inherited from a legacy system, in others it has to be followed due to security restrictions. As
almost everything runs in a central location, the system is not designed to distribute its data to
remote clients. It's impossible, in principle, to write a data acquisition program (in the current
frameworks) that would run outside certain limited area. Other pitfalls include the need of high

1

Andrey D. Petrov
Accelerator Controls Department
Accelerator Division
630.840.6877 (phone)
630.840.3093 (fax)
apetrov@fnal.gov



bandwidth to transfer graphics, and the risk of typing passwords over insecure connections.
However, despite the drawbacks, the remote mode of operation is widely adopted in controls.
There are two main reasons for that: Firstly, this architecture provides a fairly simple manageable
environment in which all the users work. Secondly, the application developers don't have to
worry about various network and security issues.

Amanageable software environment is characterized by, at least, four features:

● All nodes have similar configuration. All required components are preinstalled. The
configuration can be easily restored if the system crashes.

● There is a well-defined way of distributing applications.

● The system runtime parameters, such as the list of users logged in, the list of running
processes and threads, CPU and memory loads, contents of log files, can be monitored
without exertion.

● The code developed on-site is subject to version control. All components included in the
production release are consistent with each other.

Application frameworks offered by the existing control systems were designed many years ago
and currently are seemed to be too restrictive and somewhat obsolete. It doesn't depreciate the
value of existing applications. However, instead of developing a new C++ program that would
run via X terminal, the users may want to obtain and process data locally, or through a web-
based GUI. These (and others) technical solutions were not foreseen in the original system
design, thus not supported by the existing application infrastructures. As a result, around the core
systems emerges a set of miscellaneous components and protocols, which live on their own. This
ranges from a reasonably structured Tomcat web server to a bunch of individual scripts that may
or may not provide log files and diagnostics. They all have to be somehow deployed, started
when needed, and otherwise maintained.

For example, let's consider the ACNET Console (http://www-bd.fnal.gov/controls/public/linux-
console.html). This tiny applet provides read-only access to legacy ACNET applications. Behind
the scene, the applet (which runs on a client) connects to another server-side application that
dispatches all the traffic. That server module doesn't fit any existing application framework, so
besides the main business functions it has to:

1. Implement a custom application-level protocol on top of TCP/IP.

2. Include a trivial web server to show its status and internal diagnostics.

3. Deal with log files.

In order to run, it needs:

4. A custom script that uses proper version of Java and application libraries, and changes the
effective UID.

In order to deploy the module, the system administrator has to:

5. Create two directory with different permissions, and deploy the recent version of scripts
and libraries.

6. Configure the module to be reloaded if the system restarts.

2



Besides obvious difficulties with maintenance, the development of such new applications
requires unneeded work on services that ought to be provided by an external environment. This
includes popular transport protocols, security, logging, diagnostics, and a set of central services.

In a practical perspective, an application developer has two choices now. He or she can either
keep on writing programs inside the old traditional frameworks and abandon more modern
technological features; or start doing something new, but assume the full burden of deployment,
maintenance, and other additional work.

Current Issues
There are several general issues with the application environments that are persistent, to various
degrees, in the present control systems:

Availability of Data, Applications

In the existing systems, a legitimate user can't start a functional application where needed,
because either the application can't be installed or can't run on that host, or data from the control
system can't reach it. The data is not limited by only device readings and settings, but also
includes database connections and such. This problem is currently solved with remote access
tools (X terminal, VNC, Windows Remote Desktop, VPN), which add an extra level of
complexity. Also, some users may want to use applications locally (application developers are
among them), whereas others prefer to use on remote preconfigured hosts (occasional users).
Both options must be honored.

The application environment must support redundancy, so it can provide required services even
if the part of the infrastructure is down. All consumers should be able to get data transparently
from more than one data provider. In general, a consumer doesn't need to know which provider
it's connected to.

Security

The lack of availability is mostly caused by the lack of adequate security.When the application
environment can't control access and protect channels in the way that complies with a security
policy, this is done by the firewalls, which simply cut the traffic off. Ideally, a control system
should reuse security credentials provided externally (e.g., Kerberos tickets), and authenticate
clients on the transport (not application) level.

Common Application Context

All components of the system—event though they can be physically distributed—must run in a
common context, which provides all internal “plumbing and wiring”. This includes links
between components (both local and remote), central management (deployment, starting, and
stopping), monitoring (list of running entities, use of resources, contents of log files, internal
diagnostics), and others. The application context's architecture should promote modularity of
components and reuse of services.

3



Application Development

Programming users must have a reasonably simple way to develop new applications and
incorporate them into the system. For n-tier systems, there must be a transparent local
development process for all types of components. The infrastructure should enforce version
control and consistency of production builds. There should be be a recommended configuration
for the development environment (also installed on shared servers), and an option for those who
prefer to use an arbitrary IDE.

Integration of Different Control Systems

Traditionally for controls, the application environments have been offsprings of the
corresponding low-level data acquisition protocols. They are not compatible with each other, as
every system has its own communication protocol to the clients, different data acquisition (DAQ)
API, and separate resource namespaces. With the introduction of multi-tier architectures it's
shouldn't be the case. The middleware can solve the issues of integration by providing two
functions. Firstly, it can implement a central service that makes the data from one low-level data
acquisition systems available for others. This would allow to reuse existing tools (user
application, central cervices on a lower level) to process foreign data. Secondly, it can provide a
new common DAQ API for the clients, along with an up-to-date connection protocol that works
in a reliable and secure manner.

The Idea
The major issues with applications can't be solved within frameworks of the existing control
systems. Conceptually, low-level DAQ systems should be separated from the top-level
application infrastructure. Both parts are equally important, but deal with different concerns. In
early times, the controls application environment had to be custom to a large degree, because of
lack of readily available solutions. Now the relevant technologies are quite elaborated and widely
used, so it doesn't make sense to stick with in-house software.

It is proposed to start the development of a new distributed hybrid application infrastructure,
independent of any particular data acquisition protocol, with the following two objectives:

● In a short term, it will benefit the existing control systems—ACNET, EPICS, and
DOOCS—by providing a flexible operation environment and a set of central services that
are not currently available or need to be improved. New extensions for the core systems
will run inside that common environment. The common infrastructure will also contribute
to the integration between the different low-level data acquisition systems, by providing a
new unified client-side DAQ API, common resource name space, and bridges for cross-
availability of data. Existing applications will be able to run unchanged.

● In a long term, it will be employed for testing and demonstration of candidate
technologies relevant to the R&D Program for ILC Controls. There is a number of many
different products on the market. Right now we don't have enough practical experience
whether and how they can be applied to build an application infrastructure for accelerator
controls. Even if a system performs fairly general functions, it is always designed for a
particular group of customers to serve their needs. The business of data acquisition and
controls is quite unique and has its own set of requirements, although some of the

4



features are seemed to be common with more traditional sectors, such as
telecommunications, e-commerce, or stock market. As the ILC Controls R&D is focused
on high-availability, for the application environment it translates to such essential
features, as monitoring and management, redundancy, and conflict avoidance.

Scope and General Requirements
In [1] the authors suggest to use a multi-tier architecture for the future ILC control system. The
hybrid application infrastructure proposed in this document fits this model as shown on the
diagram below.

The service tier of the new application environment will include:

● An application server that runs a set of loosely coupled components, providing an
adequate “plumbing and wiring” between them. That includes common configuration,
logging, and monitoring functions. Each components (or group of components) is
responsible for an individual service. The candidate services are:

5



○ Data acquisition service, which makes the data from the front-end tier available to the
clients. Also, it can act as a bridge between different low-level control systems. The
data acquisition service itself consists of several smaller service, providing data
consolidation, “front-ending front-ends”, conflict avoidance, and high-level data
acquisition logics.

○ Security service (authentication & authorization, user database).

○ Naming and directory service (device database).

○ A simple service to run shell scripts.

● Application index, responsible for distribution of user applications.

● Three pluggable adapters for individual low-level control systems.

● Remote interfaces to the clients and siblings. Given the different nature of the user
applications, at least two distinct protocols will be supported: a web-based protocol (such
as SOAP,XML-RPC, etc), and a binary RPC or messaging protocol (similar to CORBA,
Java RMI, etc).

The client tier will include:

● Basic device and data abstractions.

● General data acquisition API that supports both synchronous (blocking) data acquisition
and subscriptions with asynchronous callbacks.

● Corresponding remote interfaces to the service tier.

In this perspective, the existing control systems are put inside the front-end tier. From the point
of view of an individual data acquisition system, the whole application infrastructure described
here is no more than just an ordinary user application.

Various technical considerations:

1. The system shall use reasonably standard technologies and off-the-self open-source
products whenever possible. Whereas individual components implementing specific
services have to be custom, the larger things, such as the application server, must be
generic.

2. It is assumed that the core of the middle tier will be developed on Java. Yet, all the
transport protocols must be language-independent, so the clients can use other languages
when needed. Multiple languages should be promoted. As the Java platform now
supports the direct use of other languages, the middleware itself can be made hybrid.

3. All source code (on all languages) must be properly organized and [strictly!] the subject
to version control. In particular, we should carefully track the issues of licenses on third-
party products, and on the own code. The central building system must be able to make a
complete production release and deploy it accordingly.

4. The number of dependencies inside the code shall be minimized. The client-side
applications must be realistic about resources (total size of the executable, memory
footprint, network bandwidth).

6



5. Security features (access control, TLS) are built in the system from the day one.

References
[1] Saunders C., et al., “Control System Architecture Model for ILC Reference Design” ILC-
DOC-...

7


	Abstract
	Reasons for a New Application Environment
	Current Issues
	Availability of Data, Applications
	Security
	Common Application Context
	Application Development
	Integration of Different Control Systems

	The Idea
	Scope and General Requirements
	Various technical considerations:

	References

